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ABSTRACT 

The first and most important objective of any damage identification algorithms is to ascertain with confidence if 
damage is present or not. Many methods have been proposed for damage detection based on ideas of novelty 
detection founded in pattern recognition and multivariate statistics. The philosophy of novelty detection is simple. 
Features are first extracted from a baseline system to be monitored, and subsequent data are then compared to see if 
the new features are outliers, which significantly depart from the rest of population. In damage diagnosis problems, 
the assumption is that outliers are generated from a damaged condition of the monitored system. This damage 
classification necessitates the establishment of a decision boundary. Choosing this threshold value is often based on 
the assumption that the parent distribution of data is Gaussian in nature. While the problem of novelty detection 
focuses attention on the outlier or extreme values of the data i.e. those points in the tails of the distribution, the 
threshold selection using the normality assumption weighs the central population of data. Therefore, this normality 
assumption might impose potentially misleading behavior on damage classification, and is likely to lead the damage 
diagnosis astray. In this paper, extreme value statistics is integrated with the novelty detection to specifically model 
the tails of the distribution of interest. Finally, the proposed technique is demonstrated on simulated numerical data 
and time series data measured from an eight degree-of-freedom spring-mass system. 
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1.  INTRODUCTION 

This paper is concerned with novelty detection in an unsupervised learning mode, which is the first level of damage 
identification. When applied to structural health monitoring, unsupervised learning means that data from the 
damaged condition are not available to aid in the damage detection process. The objective of unsupervised novelty 
detection is to establish a model of the system or structure’s normal condition and thereafter to signal significant 
departures from this condition. In many ways, the technology of novelty detection encompasses traditional condition 
monitoring. However, the new term is a convenient means of recognizing the significant inputs to the field from 
multivariate statistics and pattern recognition that have recently occurred. 

The first objective of novelty detection is to establish a model of the normal system condition based on the damage-
sensitive features extracted from measured system response data. This objective can be accomplished in several 
ways. The more direct methods seek to model the probability distribution of the normal condition using a priori 
training data. One of the simplest, the outlier approach (Worden et al., 2000a) assumes a Gaussian distribution for 
the damage sensitive features and parameterizes the model distribution using estimated means and covariance 
matrices. More sophisticated approaches use Gaussian mixture models (Roberts, 1998 and 2000) or kernel density 
estimates (Worden et al., 2000b). The main limitation of all of these methods is that they make unwarranted 
assumptions about the nature of the feature distribution tails. These assumptions are potentially hazardous, as the 
extreme events that reside in the tails of the normal condition are likely to be misinterpreted. More specifically, 
novelty detection constructs a model based entirely on central statistics (the mean vector and covariance matrix) and 
the analysis is largely insensitive to the structure of the tails. Another way of regarding this problem is as a question 
of setting an appropriate threshold for novelty. If the true distribution of the structural normal condition is heavy 
tailed, this threshold will be too liberal and there are likely to be many false positives, indicating damage when the 
structure is in reality undamaged. 

The major problems with modeling the undamaged condition of a system are that the functional form of the 
distribution is unknown and there that are an infinite number of candidate distributions that may be appropriate for 



the prediction applications. Currently, a choice among the infinite distributions is made by a knowledgeable operator 
and then estimate parameters based on training data. This process is largely subjective. Any choice of distribution 
and parameters will also constrain the behavior of the tails to that prescribed distribution. Also in some cases, the 
extreme values of an event may be the only data that are recorded due to sensor or storage limitations so modeling 
the data as a parent distribution could also bring about erroneous results.  

In fact, there is a large body of statistical theory that is explicitly concerned with modeling the tails of distributions, 
and these statistical procedures can be applied to the problem of novelty detection. The relevant field is referred to as 
extreme value statistics (EVS), a branch of order statistics. There are many excellent textbooks and monographs in 
this field. Some are considered classics (Gumbel, 1958; Galambos, 1978), and others are more recent (Embrechts et 
al., 1997; Kotz and Nadarajah, 2000; Reiss and Thomas, 2001). Castillo (1988) is notable in its concern with 
engineering problems in fields like meteorology, hydrology, ocean engineering, pollution studies, strength of 
materials, etc. Although extreme value statistics has been widely applied, there has been little application of these 
techniques to novelty detection. Roberts introduced the ideas of extreme value statistics into novelty detection in 
(Roberts, 1998 and 2000) and applied them in the biosignal processing context. Although these studies broke new 
ground, they could be said to have fallen prey to making unwarranted assumptions. It was assumed that the 
distribution of the base data could be modeled adequately by a Gaussian mixture model. This assumption in turn 
forced the Mahanobis distances from the Gaussian centers into a chi-square distribution, which then forced a 
Gumbel form distribution on the extreme values. Gumbel is one distribution type out of three candidate extreme 
values distributions. This paper illustrates the use of extreme value statistics in their own right and not as another 
way of looking at Gaussian distributions in an effort to avoid such assumptions. 

2.  METHODOLOGY 

2.1. Extreme Value Statistics 
The Gaussian distribution occupies its central place in statistics for a number of reasons; not least is the central limit 
theorem (Benjamin and Cornell, 1970). The central limit theorem states that if { }nXXX ,,, 21 �  is a set of random 
variables with arbitrary distributions, the sum variable nXXXX +++=Σ l21  will have a Gaussian distribution as 

∞→n . Although this theory is arguably the most important limiting theorem in statistics, it is not the only one. If 
the problem at hand is concerned with the tails of distributions, there is another theorem that is more appropriate.  

Suppose that one is given a vector of samples { }nXXX ,,, 21 l  from an arbitrary parent distribution. The most 
relevant statistic for studying the tails of the parent distribution is the maximum operator, max( { }nXXX ,,, 21 l ), 
which selects the point of maximum value from the sample vector. Note that this statistic is relevant for the right tail 
of a univariate distribution only. For the left tail, the minimum should be used. The pivotal theorem of extreme value 
statistics (Fisher, 1928) states that in the limit as the number of vector samples tends to infinity, the induced 
distribution on the maxima of the samples can only take one of three forms: Gumbel, Weibull, or Frechet. The rest 
of this section will be concerned with elaborating on this fact. 

If the values of the sequence nXXX ,,, 21 h  are arranged in ascending order, the rth element of this sequence nrX :  
is called the rth order statistic. The basic question, which now arises is, what are the distributions of the order 
statistics, in particular, the minimum, nX :1 , and the maximum, nnX : . 

Following Castillo (1988), let )(xmn be the number of samples for which .xX j ≤  Each time one chooses a value 

jX  from the sample, one is conducting a Bernoulli experiment, an experiment that has one of two outcomes, with a 
probability )(xF , the Cumulative Distribution Function (CDF), that xX j ≤ , and the complementary probability, 

))(1( xF− , that xX j > . The CDF of )(xmn is therefore a binomial distribution with Fk(x) denoting the probability 
of success, 
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If one is concerned with the maximum of the sample, the relevant order statistic is nnX :  and the relevant distribution 
is, 
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If one is concerned with the minimum of the sample, the relevant order statistic is nX :1 and the appropriate 
distribution is, 
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Concentrating now on the maximum, let ∞→n , then the limit distribution for the maximum will satisfy 
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This distribution doesn’t make sense because a CDF is developed on the assumption that it is continuous, but here 
the limit is discontinuous. The way around this discontinuity is to normalize the independent variable with a 
sequence of constants ( xbax nn +→ ) in such a way that, 
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where H(x) is a non-degenerate limit function. In fact, it is required that H(x) be continuous. The situation for 
minima is similar: a sequence of normalizations is required such that, 
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and again L(x) is a non-degenerate continuous limit function. 

The fundamental theorem of extreme value statistics is stated in Fisher and Tippett (1928). 

Theorem I. (Feasible limit distributions for maxima): 
The only three types of non-degenerate distributions )(xH  satisfying Equation (6) are 
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Or, in the appropriate form for minima, 

Theorem II. (Feasible limit distributions for minima) 
The only three types of non-degenerate distributions )(xL  satisfying Equation (7) are 
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where λ, α, and β are the model parameters, which should be estimated from the data. 

Now given samples of maximum or minimum data from a number of n-point populations, it is possible to select an 
appropriate limit distribution and fit a parametric model to the data. It is also possible to fit a model to portions of 
the parent distribution’s tails, as the distribution of the tails is equivalent to the appropriate extreme value 
distribution. Once the parametric model is obtained, it can be used to compute an effective threshold for novelty 
based on the true statistics of the data as opposed to statistics based on a blanket assumption of a Gaussian 
distribution. 

2.2. Parameter Estimation 
Having established the appropriate limit distribution, the next stage in the analysis is to estimate the parameters of 
the chosen distribution. The actual parameter estimation technique employed in this study only fits parameters to one 
canonical model form – the Gumbel distribution for minima. Therefore, if the data are distributed as maxima, the 
transformations xx −→  and λλ −→  carry each maximum CDF into the corresponding minimum CDF at least as 
far as optimization is concerned.  

Suppose the data have the Weibull distribution for minima, then the transformation )ln( λ−= XY , carries the 
Weibull distribution X  into the Gumbel distribution Y  with the following relations between the parameters, 

)ln( WG δλ =  and 
W

G β
δ 1=  (14) 

where the subscripts G and W denote Gumbel and Weibull distributions, respectively. This transformation requires 
an a priori estimate of Wλ , but this transformation can be obtained by optimizing the linearity of the empirical CDF 
plot in Weibull coordinates. 

If the data have the Frechet distribution for minima, the transformation )log( XY −−= λ  carries the Frechet 
distribution X  into the Gumbel distribution Y , with the following relations between the parameters, 

)ln( FG δλ −=   and 
F

G β
δ 1=  (15) 

where the subscript F denotes a Frechet distribution. Again the prior estimation of Fλ is required and this estimate 
can be obtained by maximizing the linearity of the empirical CDF plot in Frechet coordinates.  

After transforming either the Weibull and Frechet distribution to the Gumbel distribution, the parameter estimation 
problem is reduced to fitting the data to the limit distribution of the form in Equation (13). The optimization 
estimates the parameters λ  and δ , which minimize some error criterion. Note that because all distribution types are 
now transformed to a Gumbel distribution, the subscript G for the Gumbel distribution is omitted hereafter. The 
most straightforward error criterion is the weighted least-squares method, which seeks to minimize the following 
objective function G, 



2
0,3

1

)],;([ δλii

q

i
i xLpwG −=∑

=

 (16) 

where the training data are the points on the empirical CDF ( ){ }qipx ii ,,1,, �=  and spi '  are an appropriate choice 
of plotting positions. iw ’s are a set of weights. There are various possibilities that Castillo (1988) recommends. 

3.  ANALYSIS AND RESULTS 

The following two examples illustrate the use of EVS for setting novelty detection thresholds. Three data sets from 
different distributions are first generated to illustrate the difference between assuming a normal distribution and 
specifically modeling the extreme data.  These numeric examples are then followed by an analysis of data from an 
eight-degree-of-freedom (8DOF) spring-mass system.  The 8 DOF system is analyzed in an undamaged state and 
three different damaged states.  

3.1. Numeric data 
Simulated random signals from three different distributions are used to demonstrate the usefulness of the EVS 
without any assumptions of the parent distribution. In each example, the 99% confidence interval is computed based 
on the three following distributions: 

1. The assumed true parent distribution  

2. A best-fit normal distribution where the sample mean and standard deviation are estimated from the random 
data generated from the assumed parent distribution.  

3. A extreme value distribution, the parameters of which are estimated from either the top or bottom fraction 
of the simulated random data.  

Hereafter, the confidence interval estimation methods based on the above three distributions are referred to as 
Method 1, Method 2, and Method 3, respectively.  

Setting a confidence interval on the parent distribution using either method 1 or 2 is fairly trivial. The lower and 
upper limits of the confidence interval is constructed by choosing a type I error threshold, α. This threshold is 
related to the percentage of false positive errors in your base line data. For example, an α=.05 will correspond to a 
limit in which the lower 5% of the data is considered a false positive. Conversely a value of α=.95 will correspond 
to an upper limit in which the top 5% of the data is considered a false positive. By using α=0.005 and α=0.995 and 
the inverse CDF for either the known distribution or a best fit normal distribution, limits which encompass 99% of 
the data can be obtained. The remaining 1% of the data is therefore being considered false positive indications. 

For method 3, the lower and upper limits are estimated using the estimated parameters and a user defined type I error 
bound. Knowing that the extreme values will be modeled by a Gumbel distribution as in Equations (10) and (13), the 
following is formulated to estimate the lower limit of the confidence interval, 

Lower limit: ( )( )αδλ −−+= 1lnlnmx  (17) 

where xm is the threshold, λ  and δ are obtained from the Gumbel parameter estimation and α is the type I error 
bound. The upper limit of the confidence interval is similarly formulated, 

Upper limit: ( )( )αδλ lnln −−=Mx  (18) 

Some care must be taken in selecting the α value for method 3 in order to obtain limits that are comparable when 
applied to the parent distribution. In these numeric examples, the lower or upper 10% of the data are selected from 
the parent distribution to be modeled as the extrema. An α value for method 3 that will result in a 1% false positive 
error in the parent distribution needs to be selected. When examining the parent distribution, 0.5% of the data will be 
an outlier, which translates to 5% of the extreme data being outliers. Therefore, the appropriate type I error bounds 
for method 3 would be α=0.05 and α=0.95. This will allow the limits from all of the methods to be compared. 

The three distributions chosen for this study are normal, lognormal and gamma distributions. The normal 
distribution will provide a sanity check to make sure that the EVS and the inverse CDF provide similar thresholds. 
The lognormal and the gamma distributions are both skewed and will provide an opportunity to dramatically 



illustrate the shortcomings of the confidence interval estimation based on a normal assumption of the data. In 
Castillo (1988) it is shown that both the minimum and the maximum for the normal and lognormal distributions can 
be modeled with a Gumbel distribution, thereby reducing the effort of finding the best-fit distribution in this 
example. The gamma distribution has a Gumbel distributed maximum and a Weibull minimum. Distributions were 
created and analyzed of varying sample size from n=1000 to n=1e6. 

Looking at the normally distributed data in Figure 1, it is seen that the thresholds obtained from Methods 1 and 3 are 
comparable. In the case of normally distributed data, Method 2 is the same as Method 1. Both the lognormal and the 
gamma distributions in Figures 2 and 3 show a close match between methods one and three compared to the large 
error in method two. Because both the lognormal and the gamma distributions contain only positive data points, the 
lower limit based on normality completely misses all of the minimum values. In all of the test cases the Gumbel and 
the actual upper limit are comparable. Tables 1, 2 and 3 summarize the results of the parameter estimation and 
number of outliers for three sets of data from each of the three distributions. Only the first 1,000 data points are 
graphed for illustrative purposes in Figures 1, 2 and 3.   

 

Figure 1 - The exact 99% confidence interval of a normal parent distribution compared with that from extreme values 
statistic. This figure shows the first 1000 data points from a 10,000 data point set. 

 
The least-squares return period relative error (LSRPRE) method (Castillo, 1988) is used in fitting a Gumbel 
distribution to the maximum and minimum of the data. As can be seen in Table 1, even though method 3 returns 
thresholds that are slightly different from the known PDF, the number of outliers is more close to the expected 1%. 
 

Table 1: Estimation of 99% confidence intervals for the 10,000 data points generated from a Gaussian parent distribution  

Estimation method Upper confidence Limit Lower confidence Limit Number of outliers out 
of 10,000 samples 

Method 1 (Expected) 2.548 -2.548 100 
Method 2 (Normal) 2.551 -2.545 91 
Method 3 (Gumbel) 2.549 -2.482 99 

 



 
Figure 2 - The exact 99% confidence interval of a lognormal parent distribution compared with those computed from 
either extreme values statistic or the normality assumption.  

 
Again the LSRPRE fitting method is employed for the maximum of the lognormal data. The minimum, 
however, is fitted using the least-squares probability absolute error method. In these numeric examples, 
several techniques of parameter estimation were employed from Castillo (1988) with the method which best 
fit the distribution being decided upon visually. 

 
Table 2: Estimation of 99% confidence intervals for the 10,000 data points generated from a lognormal parent 

distribution  

Estimation method Upper confidence Limit Lower confidence Limit Number of outliers out 
of 10,000 samples 

Method 1 (Expected) 9.854 0.750 100 
Method 2 (Normal) 7.378 -1.206 230 
Method 3 (Gumbel) 9.827 0.715 103 

 



 
Figure 3 - The exact 99% confidence interval of a gamma parent distribution compared with those computed from either 
extreme values statistic or the normality assumption.  

The maximum of the gamma parent distribution is fit using the LSRPRE method, while the minimum values are fit 
using standard weighted least-squares with a weighting factor of 1. The extreme value method again shows a 
distinct advantage over the normal assumption. 
 

Table 3: Estimation of 99% confidence intervals for the 10,000 data points generated from a gamma parent distribution  

Estimation method Upper confidence Limit Lower confidence Limit Number of outliers out 
of 10,000 samples 

Method 1 (Expected) 46.369 1.689 100 
Method 2 (Normal) 37.016 -7.142 191 
Method 3 (Gumbel) 45.693 1.600 96 

 
A to the extreme values method is that a different method of parameter estimation is used to optimize the fit the 
minimum data in each of these examples. Once the extreme values are modeled well, there is, however, a noticeable 
advantage for novelty detection, even in the normally distributed example. 

3.2. Eight degree-of-freedom spring-mass system 
The effectiveness of the EVS is demonstrated using acceleration time series recorded from an 8 DOF spring mass 
system shown in Figure 4. The system is formed with eight translating masses connected by springs. Each mass is an 
aluminum disc of 25.4mm thick and 76.2mm in diameter with a center hole. The hole is lined with a Teflon bushing. 
There are small steel collars on each end of the discs (Figure 5). The masses all slide on a highly polished steel rod 
that supports the masses and constrains them to translate only along the rod. The masses are fastened together with 
coil springs epoxied to the collars that are, in turn, bolted to the masses. 

The DOFs, springs and masses are numbered from the right end of the system, where the excitation is applied, to the 
left end as shown in Figure 4. The nominal value of mass 1 (m1) is 559.3 grams. Again, this mass is located at the 
right end where the shaker is attached. m1 is greater than the others because of the hardware needed to attach the 
shaker. All the other masses (m2 through m8) are 419.4 grams. The spring constant for all the springs is 56.7 kN/m 
for the initial condition. Damping in the system is caused primarily by Coulomb friction. Every effort is made to 
minimize the friction through careful alignment of the masses and springs. A common commercial lubricant is 
applied between the Teflon bushings and the support rod.  

The undamaged configuration of the system is the state for which all springs are identical and have a linear spring 
constant. Nonlinear damage is defined as an occurrence of impact between two adjacent masses. Placing a bumper 



between two adjacent masses so that the movement of one mass is limited relative to the other mass simulates 
damage. Figure 5 shows the hardware used to simulate nonlinear damage. When one end of a bumper, which is 
placed on one mass, hits the other mass, impact occurs. This impact simulates damage caused by the impact from the 
closing of a crack during vibration. Changing the amount of relative motion permitted before contact, and changing 
the hardness of the bumpers on the impactors can control the degree of damage. For all damage cases presented, the 
initial clearance is set to zero. Table 4 summarizes each of the four damage cases. In damage case 3, five of the 
twenty-five data sets were ignored because the excitation level was low enough that the bumpers did not contact the 
other mass, resulting in effectively undamaged cases. 

 
 

Figure 4 - An eight degrees-of-freedom system attached to a shaker with accelerometers mounted on each mass. 

 
 

Figure 5 - A typical bumper used to simulate nonlinear damage. 
 

Table 4 - List of time series employed in this study 
Case Description Input level Data # per input Total data # 

0 No bumper 3, 4, 5, 6, 7 Volts 15 sets  75 sets 
1 Bumper between m1-m2 3, 4, 5, 6, 7 Volts 5 sets  25 sets 
2 Bumper between m5-m6 3, 4, 5, 6, 7 Volts 5 sets  25 sets 
3 Bumper between m7-m8 4, 5, 6, 7 Volts 5 sets  20 sets 

 
In this example, a time series model called an AR-ARX model (Sohn et al, 2001) is first fit to an acceleration time 
history measured from the baseline condition of a system. If a time prediction model obtained from the baseline 
system is used to predict a new time signal measured under a damaged condition, the prediction errors will increase.  
Based on this premise, novelty detection is performed using the prediction errors as features. However, because the 
8 DOF system is also subject to changing excitation levels, the varying input levels might result in unwanted false 
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outliers. To overcome this difficulty, an auto-associative neural network is employed for data normalization. Here, 
data normalization is a procedure of “normalizing” data sets such that signal changes caused by operational and 
environmental variations of the system can be separated from structural changes of interests, such as structural 
deterioration or degradation. Detailed discussion of data normalization using the auto-associative network can be 
found in Sohn et al., 2002. 

After prediction errors are calculated, the undamaged features are analyzed to determine the threshold values for 
novelty detection. Typically in novelty detection one would construct a ‘Novelty Index’ (NI) by possibly subtracting 
the sample mean and dividing by sample standard deviation. A confidence interval is then set according to the 
baseline NI, and then subsequent sets of NI are tested against these threshold values much like the numeric 
examples. With the 8 DOF experiment a simple no NI is computed, rather a simple threshold crossing approach is 
used to determine the number of ‘novel’ prediction errors from each feature set. Statistical tools could then be 
applied to determine if the number of novel prediction errors related to a damaged state or not. This step is, however, 
omitted in this paper. 

 Because there are 4096 points in each case and a 99% confidence interval is being used, one would expect that for 
an undamaged case there would be 21 outliers on each side of the distribution, or 42 outliers in total. The outliers in 
the undamaged data were higher than was expected, but both the normal assumption and the extreme value method 
yielded similar results. Because several normality assessment techniques revealed that the prediction errors used as 
features were fairly close to normal, there was no surprise that the normality assumption worked as well as the 
extreme value statistics in this case. Table 5 summarizes the result of the 8 DOF experiment. 

Table 5 - Summary of the 8 DOF system test results showing the predicted number of outliers contrasted with the normal 
assumption and the extreme value statistics. Highlighted cells represent the location of actual damage. 

Number of outliers
Undamaged Predicted Normal Gumbel Damage 1 Predicted Normal Gumbel

m1 42 42 54 m1 42 47 60
m2 42 47 70 m2 42 381 369
m3 42 62 63 m3 42 123 118
m4 42 62 60 m4 42 93 90
m5 42 72 65 m5 42 89 78
m6 42 62 64 m6 42 63 88
m7 42 75 67 m7 42 73 68
m8 42 82 68 m8 42 93 73

Damage 2 Predicted Normal Gumbel Damage 3 Predicted Normal Gumbel
m1 42 43 53 m1 42 41 54
m2 42 47 55 m2 42 50 58
m3 42 67 68 m3 42 78 77
m4 42 71 68 m4 42 71 64
m5 42 444 383 m5 42 103 88
m6 42 197 155 m6 42 181 155
m7 42 99 82 m7 42 586 526
m8 42 100 72 m8 42 331 290  

** Highlighted cells show expected locations of increased outliers. Outliers shown in bold are potential false-positive 
indications of damage. 

4.  CONCLUSIONS 

The results of this paper show that there are advantages of using extreme value statistics to analyze Structural Health 
Monitoring (SHM) data. Many of the SHM techniques implemented at Los Alamos National Laboratory (LANL) 
involve thresholds or decisions that are often based on a Gaussian distribution. The nature of novelty detection is to 
work with features in the extremities of a distribution that may not be accurately modeled by the Gaussian 
assumption. Despite limited scope, this paper shows positive results by reworking a simple threshold crossing 
technique to compute upper and lower limits on a confidence interval from extreme statistics instead of Gaussian 
statistics. These new limits based on extreme value statistics show a large improvement in the numeric examples. In 
the experimental example, the features were fairly close to normal, so both the Gaussian assumption and the extreme 
value statistics worked well. By incorporating extreme value statistics into damage identification and location 
algorithms, possibly limiting and erroneous assumptions in the routines can be removed, and distribution selection as 
well as parameter estimation is reduced.  
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